
Databricks Workflows CICD
and Automated Testing

Dustin Vannoy

dustinvannoy.com

https://www.dustinvannoy.com/

This talk
Databricks Workflows (also known as Jobs) are a great choice for automating data
pipelines. Once the code is ready comes the important step of promoting beyond your
dev environment. Continuous Integration / Continuous Deployment (CI/CD) involves
versioning, testing, and deploying your data processing jobs. Databricks provides tools
that allow us to follow these DevOps best practices, but how do we put these together
to ensure quality and manage workflow promotion across isolated environments? Join
this session to learn some of the most common ways teams leverage Databricks to
version, test, and deploy their automated data pipelines. In this session we cover some
basic CI/CD concepts and the options within Databricks. Then we walk through an
example of merging, testing, and deploying a workflow change.

Agenda

● Overview of CICD practices

● Databricks workflows

● Databricks asset bundles

● Testing and automation (Github Actions)

Overview of CICD practices

Why CICD?
Ensure best practices

and easy release of

new features

● Code version control

● Automated tests

● Automated deploy

(no manual steps)

● Faster innovation

Continuous Integration

● Develop code

● Save to source control

● Run automated tests (pre-deploy)

● Build artifacts

Continuous Deployment

● Deploy code to stage and prod environments

● Run integration and system tests

● Schedule automated runs

● Re-install code and restart streaming jobs

Databricks workflows

Why Databricks
Workflows?

Automated jobs that

support complex

dependencies

● Trigger on schedule, file

arrival, or API call

● Set tasks with

dependencies

● Task types:

● Notebook

● Python script

● SQL

● Etc.

Orchestrate Databricks Tasks

Variety of task types
available

Source control integration (optional)

Setup trigger (optional)

Databricks asset bundles

Anatomy of your projects in Databricks

Code: Notebooks, Python .whl,
JAR, dbt, etc.

Execution Environment:
Databricks Workspace,
compute configuration

Other resources: Databricks
Workflows, MLflow Tracking
Server and Registry, Delta Live
Tables…

Let’s describe them

Create tables and pipelines,
reports, machine learning
models, dashboards, call
external services, etc.

A simple report might consist
of a notebook running on
single node compute

A full MLOps pipeline would
require MLflow, Feature Store,
and Model Serving
components

Consist of a variety of

components

Produce a variety of data

products

The task determines the

components

YAML files that specify the

artifacts, resources, and

configurations of a

Databricks project.

The new databricks CLI has

functions to validate,

deploy and run Databricks

Asset Bundles using

bundle.yml files

Bundles are useful during

development and CI/CD

processes

What are

Databricks Asset Bundles?

How do bundles work? Where are bundles used?

2

0

Databricks Asset Bundles
Write code once, deploy everywhere

A closer look
Name and default Workspace

Resource configurations
● Jobs, DLT pipelines, MLflow, etc.

● Follows REST API schema

Environment-based specs
● Control project behavior in

different environments

Testing and automation
(Github Actions)

CI/CD for Databricks: Testing rationale

Unit Tests

Integration
Tests

System
Tests

Slow

Fast

• Functional Tests
• Integration with

other systems

• Spark Notebook /
Job tests

• Core business logic /
UDFs (dataframe in,
dataframe out)

Native Testing for PySpark in Spark 3.5 / DBR 13.3+

See Example in Spark Docs

https://spark.apache.org/docs/latest/api/python/getting_started/testing_pyspark.html

Testing libraries for Spark
▪ chispa - Python version of spark-fast-

tests

▪ Authored by Matthew Powers

▪ spark-testing-base:

▪ Scala & Python support

▪ Supports RDD, Dataframe/Dataset,

Streaming APIs

▪ spark-fast-tests - Scala, Spark 2 & 3

▪ pytest-spark - Python, native

integration with pytest

https://github.com/MrPowers/chispa
https://github.com/holdenk/spark-testing-base
https://github.com/MrPowers/spark-fast-tests
https://github.com/malexer/pytest-spark

Github Action

● Script to handle CI and CD for the project

● For mono repo, separate action definition per project

● Run unit tests and integration tests

● Deploy DABs and run validation workflows

Additional resources
● DAIS 2023 Presentation: https://www.youtube.com/watch?v=9HOgYVo-WTM

● Code:
○ https://github.com/datakickstart/datakickstart_dabs

Website: dustinvannoy.com

LinkedIn: dustinvannoy

YouTube: Dustin Vannoy on YouTube

More Content

https://www.youtube.com/watch?v=9HOgYVo-WTM
https://github.com/datakickstart/datakickstart_dabs
https://www.dustinvannoy.com/
https://www.linkedin.com/in/dustinvannoy/
https://www.youtube.com/channel/UCYdC0t9EFtyVAs0-cwqVCTw/featured

Website: dustinvannoy.com

Twitter: @dustinvannoy

YouTube: Dustin Vannoy on YouTube

More Content

Thank you!

https://www.dustinvannoy.com/
https://twitter.com/dustinvannoy
https://www.youtube.com/channel/UCYdC0t9EFtyVAs0-cwqVCTw/featured

	Slide 1: Databricks Workflows CICD and Automated Testing
	Slide 2: This talk
	Slide 3: Agenda
	Slide 4: Overview of CICD practices
	Slide 5: Why CICD?
	Slide 6: Continuous Integration
	Slide 7: Continuous Deployment
	Slide 11: Databricks workflows
	Slide 12: Why Databricks Workflows?
	Slide 13: Orchestrate Databricks Tasks
	Slide 14: Variety of task types available
	Slide 15: Source control integration (optional)
	Slide 16: Setup trigger (optional)
	Slide 18: Databricks asset bundles
	Slide 19: Anatomy of your projects in Databricks
	Slide 20: Databricks Asset Bundles
	Slide 21: A closer look
	Slide 23: Testing and automation (Github Actions)
	Slide 24: CI/CD for Databricks: Testing rationale
	Slide 25: Native Testing for PySpark in Spark 3.5 / DBR 13.3+
	Slide 26: Testing libraries for Spark
	Slide 27: Github Action
	Slide 34: Additional resources
	Slide 35

