Databricks Workflows CICD
and Automated Testing

Dustin Vannoy
dustinvannoy.com

https://www.dustinvannoy.com/

This talk

Databricks Workflows (also known as Jobs) are a great choice for automating data
pipelines. Once the code is ready comes the important step of promoting beyond your
dev environment. Continuous Integration / Continuous Deployment (Cl/CD) involves
versioning, testing, and deploying your data processing jobs. Databricks provides tools
that allow us to follow these DevOps best practices, but how do we put these together
to ensure quality and manage workflow promotion across isolated environments? Join
this session to learn some of the most common ways teams leverage Databricks to
version, test, and deploy their automated data pipelines. In this session we cover some
basic Cl/CD concepts and the options within Databricks. Then we walk through an
example of merging, testing, and deploying a workflow change.

Agenda

e Overview of CICD practices
e Databricks workflows
e Databricks asset bundles

e Testing and automation (Github Actions)

Overview of CICD practices

o« Code version control

Automated tests

Why CICD?

Automated deploy
Ensure best practices

and easy release of
new features

(no manual steps)

o Faster innovation

Continuous Integration

® Develop code
® Save to source control
® Run automated tests (pre-deploy)

® Build artifacts

Continuous Deployment

® Deploy code to stage and prod environments
® Run integration and system tests
® Schedule automated runs

® Re-install code and restart streaming jobs

Databricks workflows

Why Databricks
Workflows?

Automated jobs that
support complex
dependencies

Trigger on schedule, file
arrival, or API call

Set tasks with
dependencies

Task types:

e Notebook

e Python script
e SOL

o [tc

Orchestrate Databricks Tasks

Workflows > Jobs >

Demo Job ¢

Runs Tasks

Demo_Task1
P src/notebook

& Job_cluster

Demo_Task2_PythonScript

P Python file at ...kstart_dabs/main.py

& Job_cluster

Demo_Task3_SQL
[0 ..project/src/queries/taxi_counts.sql

7 Starter Warehouse

+ Add task

Workflows > Jobs >

Demo Job ¥

Runs Tasks

Demo_Task1

(|
&m Job_cluster

Variety of task type
available

Type* Notebook

Source* © Python script
Python wheel
Path* ©®

sSQL

Cluster* © Delta Live Tables pipeline

Dependent libraries © dbt

JAR
Parameters ©
Spark Submit

Notifications @ Run Job

If/else condition
Retries @ + Add

Duration threshold —+ Add

Source control integration (optional)

Runs Tasks

Task name* @
Type*
Source* @

Add a git reference

Cluster* @
Dependent libraries @

Parameters @

@D O

Demo_Task1
£ Unspecified path

i Job_cluster

Git information

Demo_Task1

Git repository URL @

Notebook https:/fgithub.com/datakickstart/datakickstart_dabs.git

Git provider
Git reference (branch [tag / commit) @

monorepo

Job_cluster 144 GB - 36 Cores - DBR

-+ Add

-+ Add

Git provider
GitHub

branch

Setup trigger (optional)

Schedules & Triggers

Trigger type

Scheduled
File arrival

Continuous ®

Schedules & Triggers Trigger type

File arrival
Trigger Status

o Active Job currently does not have failure notifications. Consider using email or webhook notifications to be notified when trigger

evaluation fails.
Paused

File arrival triggers monitor cloud storage paths of up to 10,000 files for new files. These paths are either volumes or external locations
Trigger type managed through the Unity Catalog.

Scheduled Storage location

[Volumes/main/demo_ext/demo-vol1/

Schedule @

Advanced
Every Day : (UTC+00:00) UTC

Mini triggers in

Show cron syntax
300

Wait after last change in seconds |
Cancel

Databricks asset bundles

Anatomy of your projects in Databricks

Let's describe them

Consist of a variety of
components

Code: Notebooks, Python .whl,
JAR, dbt, etc.

Execution Environment:
Databricks Workspace,
compute configuration

Other resources: Databricks
Workflows, MLflow Tracking
Server and Registry, Delta Live
Tables...

Produce a variety of data
products

Create tables and pipelines,
reports, machine learning
models, dashboards, call
external services, etc.

The task determines the
components

A simple report might consist
of a notebook running on
single node compute

A full MLOps pipeline would
require MLflow, Feature Store,
and Model Serving
components

Databricks Asset Bundles

Write code once, deploy everywhere

What are
Databricks Asset Bundles?

YAML files that specify the
artifacts, resources, and
configurations of a

Databricks project.

How do bundles work?

The new databricks CLI has
functions to validate,
deploy and run Databricks
Asset Bundles using

bundle.yml files

Where are bundles used?

Bundles are useful during
development and CI/CD

processes

A closer look

Name and default Workspace

Resource configurations

® Jobs, DLT pipelines, MLflow, etc.

® Follows REST APl schema

Environment-based specs

® Control project behavior in
different environments

bundie.yml

bundle.yml| x

i bundle:

2 name: shark_sightings

3

4 workspace:

5) host: https://e2-dogfood.staging.cloud.databricks.com
6

7 resources:

8 jobs:

9 shark_sightings:

10 name: "[${bundle.environment}] Shark sightings"
11 tasks:

12 - task_key: shark_sightings

13 notebook_task:
14 base_parameters:
15 dbname: "shark_sightings_${bundle.environment}"
16 notebook_path: ./shark_sightings.py

17 new_cluster:

18 spark_version: 10.4.x-scala2.12

19 num_workers: 1

20 node_type_id: i3.xlarge

21

22 environments:

23 development:

24 default: true

25 production:

26 workspace:

27 host: https://e2-demo-west.cloud.databricks.com
28 resources:

29 jobs:

30 shark_sightings:

31 schedule:

32 quartz_cron_expression: 14 8 14 x % ?

33 . timezone_id: UTC

Line 34, Column 1

Spaces: 2

 SHARK_SIGHTINGS
> .databricks
> .vscode

.gitignore

G | DUNdle.yml

YAML

@ shark_sightings.py

Testing and automation
(Github Actions)

Cl/CD for Databricks: Testing rationale

®* Functional Tests
® Integration with
other systems

Slow

* Spark Notebook /

Integration

Tests Job tests

Fast
® Core business logic/
UNILTEsts UDFs (dataframe in,
dataframe out)

Native Testing for PySpark in Spark 3.5 / DBR 13.3+

pyspark.testing.assertDataFrameEqual

pyspark.testing.assertDataF rameEqual(actual: Union[pyspark.sql.dataframe.DataFrame,
pandas.DataFrame, pyspark.pandas.DataFrame, List{pyspark.sql.types.Row]], expected:
Union[pyspark.sql.dataframe.DataFrame, pandas.DataFrame, pyspark.pandas.DataFrame,

List[pyspark.sql.types.Row]], checkRowOrder: bool = False, rtol: float = 1e-05, atol: float = 1e-08)

A util function to assert equality between actual and expected (DataFrames or lists of Rows), with [source]

optional parameters checkRowOrder, rtol, and atol.

Supports Spark, Spark Connect, pandas, and pandas-on-Spark DataFrames. For more information about
pandas-on-Spark DataFrame equality, see the docs for assertPandasOnSparkEqual.

| © New in version 3.5.0.

pyspark.testing.assertSchemaEqual

pyspark.testing.assertSchemaEqual(actual: pyspark.sql.types.StructType, expected:

pyspark.sql.types.StructType) [source]

A util function to assert equality between DataFrame schemas actual and expected.

© New in version 3.5.0.

Example in Spark Docs

pyspark.testing.assertPandasOnSparkEqual

pyspark.testing.assertPandasOnSparkEqual(actual: Union[pyspark.pandas.frame.DataFrame,

pyspark.pandas.series.Series, pyspark.pandas.indexes.base.lndex], expected:

Union[pyspark.pandas.frame.DataFrame, pandas.core.frame.DataFrame, pyspark.pandas.series.Series,

pandas.core.series.Series, pyspark.pandas.indexes.base.Index, pandas.core.indexes.base.Index],

checkExact: bool = True, aimost: bool = False, rtol: float = 1e-05, atol: float = 1e-08, checkRowOrder:

bool = True) [source]
A util function to assert equality between actual (pandas-on-Spark object) and expected (pandas-on-Spark
or pandas object).

© New in version 3.5.0.

https://spark.apache.org/docs/latest/api/python/getting_started/testing_pyspark.html

Testing libraries for Spark

] Ch'SlQa _ PythOn VGI’SIOI’] Of Spark_fast_ from chispa.dataframe_comparer import assert_df_equality

def test_remove_non_word_characters_long():

tests oSt enovenon
= Authored by Matthew Powers i)
= spark-testing-base: toner)
= Scala & Python support cource_df = spark.¢reatevatar rane (source_data, ["nane])
" Supports RDD, Dataframe/Dataset, actual_df = source_df.uithColum(
Streaming APIs remove_non word_characters (F.col("nanc))

)

= spark-fast-tests - Scala, Spark 2 & 3
" pytest-spark - Python, native .
integration with pytest e sludsay Plulse®),

(None, Mone)
1
expected_df = spark.createDataFrame(expected_data, ["name", "clean_name"])

expected_data = [

assert_df_equality(actual_df, expected_df)

https://github.com/MrPowers/chispa
https://github.com/holdenk/spark-testing-base
https://github.com/MrPowers/spark-fast-tests
https://github.com/malexer/pytest-spark

Github Action

® Script to handle Cl and CD for the project
® For mono repo, separate action definition per project
® Run unit tests and integration tests

® Deploy DABs and run validation workflows

Additional resources

DAIS 2023 Presentation: https://www.youtube.com/watch?v=9HOgYVo-WTM

Code;
https://qgithub.com/datakickstart/datakickstart dabs

More Content

Website: dustinvannoy.com
LinkedIn: dustinvannoy
YouTube: Dustin Vannoy on YouTube

https://www.youtube.com/watch?v=9HOgYVo-WTM
https://github.com/datakickstart/datakickstart_dabs
https://www.dustinvannoy.com/
https://www.linkedin.com/in/dustinvannoy/
https://www.youtube.com/channel/UCYdC0t9EFtyVAs0-cwqVCTw/featured

Thank you!

More Content

Website: dustinvannoy.com
Twitter: @dustinvannoy
YouTube: Dustin Vannoy on YouTube

https://www.dustinvannoy.com/
https://twitter.com/dustinvannoy
https://www.youtube.com/channel/UCYdC0t9EFtyVAs0-cwqVCTw/featured

	Slide 1: Databricks Workflows CICD and Automated Testing
	Slide 2: This talk
	Slide 3: Agenda
	Slide 4: Overview of CICD practices
	Slide 5: Why CICD?
	Slide 6: Continuous Integration
	Slide 7: Continuous Deployment
	Slide 11: Databricks workflows
	Slide 12: Why Databricks Workflows?
	Slide 13: Orchestrate Databricks Tasks
	Slide 14: Variety of task types available
	Slide 15: Source control integration (optional)
	Slide 16: Setup trigger (optional)
	Slide 18: Databricks asset bundles
	Slide 19: Anatomy of your projects in Databricks
	Slide 20: Databricks Asset Bundles
	Slide 21: A closer look
	Slide 23: Testing and automation (Github Actions)
	Slide 24: CI/CD for Databricks: Testing rationale
	Slide 25: Native Testing for PySpark in Spark 3.5 / DBR 13.3+
	Slide 26: Testing libraries for Spark
	Slide 27: Github Action
	Slide 34: Additional resources
	Slide 35

